\(\int \frac {x^4}{(d+e x) (a d e+(c d^2+a e^2) x+c d e x^2)^{3/2}} \, dx\) [478]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [B] (verification not implemented)
   Sympy [F]
   Maxima [F(-2)]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 40, antiderivative size = 438 \[ \int \frac {x^4}{(d+e x) \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}} \, dx=-\frac {2 d x^3 \left (a e \left (c d^2-a e^2\right )+c d \left (c d^2-a e^2\right ) x\right )}{3 e \left (c d^2-a e^2\right )^2 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}-\frac {2 x \left (a d e \left (c d^2-a e^2\right ) \left (5 c^2 d^4-10 a c d^2 e^2-3 a^2 e^4\right )+\left (c d^2-a e^2\right ) \left (5 c^3 d^6-9 a c^2 d^4 e^2-a^2 c d^2 e^4-3 a^3 e^6\right ) x\right )}{3 c d e^2 \left (c d^2-a e^2\right )^4 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}+\frac {\left (15 c^3 d^6-31 a c^2 d^4 e^2+9 a^2 c d^2 e^4-9 a^3 e^6\right ) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{3 c^2 d^2 e^3 \left (c d^2-a e^2\right )^3}-\frac {\left (5 c d^2+3 a e^2\right ) \text {arctanh}\left (\frac {c d^2+a e^2+2 c d e x}{2 \sqrt {c} \sqrt {d} \sqrt {e} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\right )}{2 c^{5/2} d^{5/2} e^{7/2}} \]

[Out]

-2/3*d*x^3*(a*e*(-a*e^2+c*d^2)+c*d*(-a*e^2+c*d^2)*x)/e/(-a*e^2+c*d^2)^2/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2
)-1/2*(3*a*e^2+5*c*d^2)*arctanh(1/2*(2*c*d*e*x+a*e^2+c*d^2)/c^(1/2)/d^(1/2)/e^(1/2)/(a*d*e+(a*e^2+c*d^2)*x+c*d
*e*x^2)^(1/2))/c^(5/2)/d^(5/2)/e^(7/2)-2/3*x*(a*d*e*(-a*e^2+c*d^2)*(-3*a^2*e^4-10*a*c*d^2*e^2+5*c^2*d^4)+(-a*e
^2+c*d^2)*(-3*a^3*e^6-a^2*c*d^2*e^4-9*a*c^2*d^4*e^2+5*c^3*d^6)*x)/c/d/e^2/(-a*e^2+c*d^2)^4/(a*d*e+(a*e^2+c*d^2
)*x+c*d*e*x^2)^(1/2)+1/3*(-9*a^3*e^6+9*a^2*c*d^2*e^4-31*a*c^2*d^4*e^2+15*c^3*d^6)*(a*d*e+(a*e^2+c*d^2)*x+c*d*e
*x^2)^(1/2)/c^2/d^2/e^3/(-a*e^2+c*d^2)^3

Rubi [A] (verified)

Time = 0.35 (sec) , antiderivative size = 438, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.125, Rules used = {863, 832, 654, 635, 212} \[ \int \frac {x^4}{(d+e x) \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}} \, dx=-\frac {2 x \left (a d e \left (c d^2-a e^2\right ) \left (-3 a^2 e^4-10 a c d^2 e^2+5 c^2 d^4\right )+x \left (c d^2-a e^2\right ) \left (-3 a^3 e^6-a^2 c d^2 e^4-9 a c^2 d^4 e^2+5 c^3 d^6\right )\right )}{3 c d e^2 \left (c d^2-a e^2\right )^4 \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}+\frac {\left (-9 a^3 e^6+9 a^2 c d^2 e^4-31 a c^2 d^4 e^2+15 c^3 d^6\right ) \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{3 c^2 d^2 e^3 \left (c d^2-a e^2\right )^3}-\frac {\left (3 a e^2+5 c d^2\right ) \text {arctanh}\left (\frac {a e^2+c d^2+2 c d e x}{2 \sqrt {c} \sqrt {d} \sqrt {e} \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}\right )}{2 c^{5/2} d^{5/2} e^{7/2}}-\frac {2 d x^3 \left (c d x \left (c d^2-a e^2\right )+a e \left (c d^2-a e^2\right )\right )}{3 e \left (c d^2-a e^2\right )^2 \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2}} \]

[In]

Int[x^4/((d + e*x)*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2)),x]

[Out]

(-2*d*x^3*(a*e*(c*d^2 - a*e^2) + c*d*(c*d^2 - a*e^2)*x))/(3*e*(c*d^2 - a*e^2)^2*(a*d*e + (c*d^2 + a*e^2)*x + c
*d*e*x^2)^(3/2)) - (2*x*(a*d*e*(c*d^2 - a*e^2)*(5*c^2*d^4 - 10*a*c*d^2*e^2 - 3*a^2*e^4) + (c*d^2 - a*e^2)*(5*c
^3*d^6 - 9*a*c^2*d^4*e^2 - a^2*c*d^2*e^4 - 3*a^3*e^6)*x))/(3*c*d*e^2*(c*d^2 - a*e^2)^4*Sqrt[a*d*e + (c*d^2 + a
*e^2)*x + c*d*e*x^2]) + ((15*c^3*d^6 - 31*a*c^2*d^4*e^2 + 9*a^2*c*d^2*e^4 - 9*a^3*e^6)*Sqrt[a*d*e + (c*d^2 + a
*e^2)*x + c*d*e*x^2])/(3*c^2*d^2*e^3*(c*d^2 - a*e^2)^3) - ((5*c*d^2 + 3*a*e^2)*ArcTanh[(c*d^2 + a*e^2 + 2*c*d*
e*x)/(2*Sqrt[c]*Sqrt[d]*Sqrt[e]*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])])/(2*c^(5/2)*d^(5/2)*e^(7/2))

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 635

Int[1/Sqrt[(a_) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[2, Subst[Int[1/(4*c - x^2), x], x, (b + 2*c*x)
/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 654

Int[((d_.) + (e_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[e*((a + b*x + c*x^2)^(p +
 1)/(2*c*(p + 1))), x] + Dist[(2*c*d - b*e)/(2*c), Int[(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, p}
, x] && NeQ[2*c*d - b*e, 0] && NeQ[p, -1]

Rule 832

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Sim
p[(-(d + e*x)^(m - 1))*(a + b*x + c*x^2)^(p + 1)*((2*a*c*(e*f + d*g) - b*(c*d*f + a*e*g) - (2*c^2*d*f + b^2*e*
g - c*(b*e*f + b*d*g + 2*a*e*g))*x)/(c*(p + 1)*(b^2 - 4*a*c))), x] - Dist[1/(c*(p + 1)*(b^2 - 4*a*c)), Int[(d
+ e*x)^(m - 2)*(a + b*x + c*x^2)^(p + 1)*Simp[2*c^2*d^2*f*(2*p + 3) + b*e*g*(a*e*(m - 1) + b*d*(p + 2)) - c*(2
*a*e*(e*f*(m - 1) + d*g*m) + b*d*(d*g*(2*p + 3) - e*f*(m - 2*p - 4))) + e*(b^2*e*g*(m + p + 1) + 2*c^2*d*f*(m
+ 2*p + 2) - c*(2*a*e*g*m + b*(e*f + d*g)*(m + 2*p + 2)))*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] &&
NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && LtQ[p, -1] && GtQ[m, 1] && ((EqQ[m, 2] && EqQ[p, -3] &
& RationalQ[a, b, c, d, e, f, g]) ||  !ILtQ[m + 2*p + 3, 0])

Rule 863

Int[((x_)^(n_.)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_))/((d_) + (e_.)*(x_)), x_Symbol] :> Int[x^n*(a/d + c*(
x/e))*(a + b*x + c*x^2)^(p - 1), x] /; FreeQ[{a, b, c, d, e, n, p}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - b
*d*e + a*e^2, 0] &&  !IntegerQ[p] && ( !IntegerQ[n] ||  !IntegerQ[2*p] || IGtQ[n, 2] || (GtQ[p, 0] && NeQ[n, 2
]))

Rubi steps \begin{align*} \text {integral}& = \int \frac {x^4 (a e+c d x)}{\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}} \, dx \\ & = -\frac {2 d x^3 \left (a e \left (c d^2-a e^2\right )+c d \left (c d^2-a e^2\right ) x\right )}{3 e \left (c d^2-a e^2\right )^2 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}+\frac {2 \int \frac {x^2 \left (3 a c d^2 e \left (c d^2-a e^2\right )+\frac {1}{2} c d \left (5 c d^2-3 a e^2\right ) \left (c d^2-a e^2\right ) x\right )}{\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}} \, dx}{3 c d e \left (c d^2-a e^2\right )^2} \\ & = -\frac {2 d x^3 \left (a e \left (c d^2-a e^2\right )+c d \left (c d^2-a e^2\right ) x\right )}{3 e \left (c d^2-a e^2\right )^2 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}-\frac {2 x \left (a d e \left (c d^2-a e^2\right ) \left (5 c^2 d^4-10 a c d^2 e^2-3 a^2 e^4\right )+\left (c d^2-a e^2\right ) \left (5 c^3 d^6-9 a c^2 d^4 e^2-a^2 c d^2 e^4-3 a^3 e^6\right ) x\right )}{3 c d e^2 \left (c d^2-a e^2\right )^4 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}+\frac {4 \int \frac {\frac {1}{2} a c d^2 e \left (c d^2-a e^2\right ) \left (5 c^2 d^4-10 a c d^2 e^2-3 a^2 e^4\right )+\frac {1}{4} c d \left (c d^2-a e^2\right ) \left (15 c^3 d^6-31 a c^2 d^4 e^2+9 a^2 c d^2 e^4-9 a^3 e^6\right ) x}{\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx}{3 c^2 d^2 e^2 \left (c d^2-a e^2\right )^4} \\ & = -\frac {2 d x^3 \left (a e \left (c d^2-a e^2\right )+c d \left (c d^2-a e^2\right ) x\right )}{3 e \left (c d^2-a e^2\right )^2 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}-\frac {2 x \left (a d e \left (c d^2-a e^2\right ) \left (5 c^2 d^4-10 a c d^2 e^2-3 a^2 e^4\right )+\left (c d^2-a e^2\right ) \left (5 c^3 d^6-9 a c^2 d^4 e^2-a^2 c d^2 e^4-3 a^3 e^6\right ) x\right )}{3 c d e^2 \left (c d^2-a e^2\right )^4 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}+\frac {\left (15 c^3 d^6-31 a c^2 d^4 e^2+9 a^2 c d^2 e^4-9 a^3 e^6\right ) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{3 c^2 d^2 e^3 \left (c d^2-a e^2\right )^3}-\frac {\left (5 c d^2+3 a e^2\right ) \int \frac {1}{\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx}{2 c^2 d^2 e^3} \\ & = -\frac {2 d x^3 \left (a e \left (c d^2-a e^2\right )+c d \left (c d^2-a e^2\right ) x\right )}{3 e \left (c d^2-a e^2\right )^2 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}-\frac {2 x \left (a d e \left (c d^2-a e^2\right ) \left (5 c^2 d^4-10 a c d^2 e^2-3 a^2 e^4\right )+\left (c d^2-a e^2\right ) \left (5 c^3 d^6-9 a c^2 d^4 e^2-a^2 c d^2 e^4-3 a^3 e^6\right ) x\right )}{3 c d e^2 \left (c d^2-a e^2\right )^4 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}+\frac {\left (15 c^3 d^6-31 a c^2 d^4 e^2+9 a^2 c d^2 e^4-9 a^3 e^6\right ) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{3 c^2 d^2 e^3 \left (c d^2-a e^2\right )^3}-\frac {\left (5 c d^2+3 a e^2\right ) \text {Subst}\left (\int \frac {1}{4 c d e-x^2} \, dx,x,\frac {c d^2+a e^2+2 c d e x}{\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\right )}{c^2 d^2 e^3} \\ & = -\frac {2 d x^3 \left (a e \left (c d^2-a e^2\right )+c d \left (c d^2-a e^2\right ) x\right )}{3 e \left (c d^2-a e^2\right )^2 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}-\frac {2 x \left (a d e \left (c d^2-a e^2\right ) \left (5 c^2 d^4-10 a c d^2 e^2-3 a^2 e^4\right )+\left (c d^2-a e^2\right ) \left (5 c^3 d^6-9 a c^2 d^4 e^2-a^2 c d^2 e^4-3 a^3 e^6\right ) x\right )}{3 c d e^2 \left (c d^2-a e^2\right )^4 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}+\frac {\left (15 c^3 d^6-31 a c^2 d^4 e^2+9 a^2 c d^2 e^4-9 a^3 e^6\right ) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{3 c^2 d^2 e^3 \left (c d^2-a e^2\right )^3}-\frac {\left (5 c d^2+3 a e^2\right ) \tanh ^{-1}\left (\frac {c d^2+a e^2+2 c d e x}{2 \sqrt {c} \sqrt {d} \sqrt {e} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\right )}{2 c^{5/2} d^{5/2} e^{7/2}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.53 (sec) , antiderivative size = 300, normalized size of antiderivative = 0.68 \[ \int \frac {x^4}{(d+e x) \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}} \, dx=\frac {\frac {\sqrt {c} \sqrt {d} \sqrt {e} (a e+c d x) \left (-9 a^4 e^7 (d+e x)^2+3 a^3 c d e^5 (3 d-e x) (d+e x)^2+c^4 d^7 x \left (15 d^2+20 d e x+3 e^2 x^2\right )+a c^3 d^5 e \left (15 d^3-11 d^2 e x-39 d e^2 x^2-9 e^3 x^3\right )+a^2 c^2 d^3 e^3 \left (-31 d^3-33 d^2 e x+9 d e^2 x^2+9 e^3 x^3\right )\right )}{\left (c d^2-a e^2\right )^3}-3 \left (5 c d^2+3 a e^2\right ) (a e+c d x)^{3/2} (d+e x)^{3/2} \text {arctanh}\left (\frac {\sqrt {c} \sqrt {d} \sqrt {d+e x}}{\sqrt {e} \sqrt {a e+c d x}}\right )}{3 c^{5/2} d^{5/2} e^{7/2} ((a e+c d x) (d+e x))^{3/2}} \]

[In]

Integrate[x^4/((d + e*x)*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2)),x]

[Out]

((Sqrt[c]*Sqrt[d]*Sqrt[e]*(a*e + c*d*x)*(-9*a^4*e^7*(d + e*x)^2 + 3*a^3*c*d*e^5*(3*d - e*x)*(d + e*x)^2 + c^4*
d^7*x*(15*d^2 + 20*d*e*x + 3*e^2*x^2) + a*c^3*d^5*e*(15*d^3 - 11*d^2*e*x - 39*d*e^2*x^2 - 9*e^3*x^3) + a^2*c^2
*d^3*e^3*(-31*d^3 - 33*d^2*e*x + 9*d*e^2*x^2 + 9*e^3*x^3)))/(c*d^2 - a*e^2)^3 - 3*(5*c*d^2 + 3*a*e^2)*(a*e + c
*d*x)^(3/2)*(d + e*x)^(3/2)*ArcTanh[(Sqrt[c]*Sqrt[d]*Sqrt[d + e*x])/(Sqrt[e]*Sqrt[a*e + c*d*x])])/(3*c^(5/2)*d
^(5/2)*e^(7/2)*((a*e + c*d*x)*(d + e*x))^(3/2))

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(1111\) vs. \(2(408)=816\).

Time = 0.86 (sec) , antiderivative size = 1112, normalized size of antiderivative = 2.54

method result size
default \(\text {Expression too large to display}\) \(1112\)

[In]

int(x^4/(e*x+d)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2),x,method=_RETURNVERBOSE)

[Out]

1/e*(x^2/c/d/e/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)-3/2*(a*e^2+c*d^2)/c/d/e*(-x/c/d/e/(a*d*e+(a*e^2+c*d^2)*
x+c*d*e*x^2)^(1/2)-1/2*(a*e^2+c*d^2)/c/d/e*(-1/c/d/e/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)-(a*e^2+c*d^2)/c/d
/e*(2*c*d*e*x+a*e^2+c*d^2)/(4*a*c*d^2*e^2-(a*e^2+c*d^2)^2)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2))+1/c/d/e*ln
((1/2*e^2*a+1/2*c*d^2+c*d*e*x)/(c*d*e)^(1/2)+(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2))/(c*d*e)^(1/2))-2*a/c*(-1
/c/d/e/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)-(a*e^2+c*d^2)/c/d/e*(2*c*d*e*x+a*e^2+c*d^2)/(4*a*c*d^2*e^2-(a*e
^2+c*d^2)^2)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)))+d^2/e^3*(-1/c/d/e/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/
2)-(a*e^2+c*d^2)/c/d/e*(2*c*d*e*x+a*e^2+c*d^2)/(4*a*c*d^2*e^2-(a*e^2+c*d^2)^2)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^
2)^(1/2))-2*d^3/e^4*(2*c*d*e*x+a*e^2+c*d^2)/(4*a*c*d^2*e^2-(a*e^2+c*d^2)^2)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^
(1/2)-d/e^2*(-x/c/d/e/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)-1/2*(a*e^2+c*d^2)/c/d/e*(-1/c/d/e/(a*d*e+(a*e^2+
c*d^2)*x+c*d*e*x^2)^(1/2)-(a*e^2+c*d^2)/c/d/e*(2*c*d*e*x+a*e^2+c*d^2)/(4*a*c*d^2*e^2-(a*e^2+c*d^2)^2)/(a*d*e+(
a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2))+1/c/d/e*ln((1/2*e^2*a+1/2*c*d^2+c*d*e*x)/(c*d*e)^(1/2)+(a*d*e+(a*e^2+c*d^2)*x
+c*d*e*x^2)^(1/2))/(c*d*e)^(1/2))+d^4/e^5*(-2/3/(a*e^2-c*d^2)/(x+d/e)/(c*d*e*(x+d/e)^2+(a*e^2-c*d^2)*(x+d/e))^
(1/2)+8/3*c*d*e/(a*e^2-c*d^2)^3*(2*c*d*e*(x+d/e)+e^2*a-c*d^2)/(c*d*e*(x+d/e)^2+(a*e^2-c*d^2)*(x+d/e))^(1/2))

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 884 vs. \(2 (408) = 816\).

Time = 1.67 (sec) , antiderivative size = 1782, normalized size of antiderivative = 4.07 \[ \int \frac {x^4}{(d+e x) \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}} \, dx=\text {Too large to display} \]

[In]

integrate(x^4/(e*x+d)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2),x, algorithm="fricas")

[Out]

[1/12*(3*(5*a*c^4*d^10*e - 12*a^2*c^3*d^8*e^3 + 6*a^3*c^2*d^6*e^5 + 4*a^4*c*d^4*e^7 - 3*a^5*d^2*e^9 + (5*c^5*d
^9*e^2 - 12*a*c^4*d^7*e^4 + 6*a^2*c^3*d^5*e^6 + 4*a^3*c^2*d^3*e^8 - 3*a^4*c*d*e^10)*x^3 + (10*c^5*d^10*e - 19*
a*c^4*d^8*e^3 + 14*a^3*c^2*d^4*e^7 - 2*a^4*c*d^2*e^9 - 3*a^5*e^11)*x^2 + (5*c^5*d^11 - 2*a*c^4*d^9*e^2 - 18*a^
2*c^3*d^7*e^4 + 16*a^3*c^2*d^5*e^6 + 5*a^4*c*d^3*e^8 - 6*a^5*d*e^10)*x)*sqrt(c*d*e)*log(8*c^2*d^2*e^2*x^2 + c^
2*d^4 + 6*a*c*d^2*e^2 + a^2*e^4 - 4*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(2*c*d*e*x + c*d^2 + a*e^2)*sq
rt(c*d*e) + 8*(c^2*d^3*e + a*c*d*e^3)*x) + 4*(15*a*c^4*d^9*e^2 - 31*a^2*c^3*d^7*e^4 + 9*a^3*c^2*d^5*e^6 - 9*a^
4*c*d^3*e^8 + 3*(c^5*d^8*e^3 - 3*a*c^4*d^6*e^5 + 3*a^2*c^3*d^4*e^7 - a^3*c^2*d^2*e^9)*x^3 + (20*c^5*d^9*e^2 -
39*a*c^4*d^7*e^4 + 9*a^2*c^3*d^5*e^6 + 3*a^3*c^2*d^3*e^8 - 9*a^4*c*d*e^10)*x^2 + (15*c^5*d^10*e - 11*a*c^4*d^8
*e^3 - 33*a^2*c^3*d^6*e^5 + 15*a^3*c^2*d^4*e^7 - 18*a^4*c*d^2*e^9)*x)*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)
*x))/(a*c^6*d^11*e^5 - 3*a^2*c^5*d^9*e^7 + 3*a^3*c^4*d^7*e^9 - a^4*c^3*d^5*e^11 + (c^7*d^10*e^6 - 3*a*c^6*d^8*
e^8 + 3*a^2*c^5*d^6*e^10 - a^3*c^4*d^4*e^12)*x^3 + (2*c^7*d^11*e^5 - 5*a*c^6*d^9*e^7 + 3*a^2*c^5*d^7*e^9 + a^3
*c^4*d^5*e^11 - a^4*c^3*d^3*e^13)*x^2 + (c^7*d^12*e^4 - a*c^6*d^10*e^6 - 3*a^2*c^5*d^8*e^8 + 5*a^3*c^4*d^6*e^1
0 - 2*a^4*c^3*d^4*e^12)*x), 1/6*(3*(5*a*c^4*d^10*e - 12*a^2*c^3*d^8*e^3 + 6*a^3*c^2*d^6*e^5 + 4*a^4*c*d^4*e^7
- 3*a^5*d^2*e^9 + (5*c^5*d^9*e^2 - 12*a*c^4*d^7*e^4 + 6*a^2*c^3*d^5*e^6 + 4*a^3*c^2*d^3*e^8 - 3*a^4*c*d*e^10)*
x^3 + (10*c^5*d^10*e - 19*a*c^4*d^8*e^3 + 14*a^3*c^2*d^4*e^7 - 2*a^4*c*d^2*e^9 - 3*a^5*e^11)*x^2 + (5*c^5*d^11
 - 2*a*c^4*d^9*e^2 - 18*a^2*c^3*d^7*e^4 + 16*a^3*c^2*d^5*e^6 + 5*a^4*c*d^3*e^8 - 6*a^5*d*e^10)*x)*sqrt(-c*d*e)
*arctan(1/2*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(2*c*d*e*x + c*d^2 + a*e^2)*sqrt(-c*d*e)/(c^2*d^2*e^2*
x^2 + a*c*d^2*e^2 + (c^2*d^3*e + a*c*d*e^3)*x)) + 2*(15*a*c^4*d^9*e^2 - 31*a^2*c^3*d^7*e^4 + 9*a^3*c^2*d^5*e^6
 - 9*a^4*c*d^3*e^8 + 3*(c^5*d^8*e^3 - 3*a*c^4*d^6*e^5 + 3*a^2*c^3*d^4*e^7 - a^3*c^2*d^2*e^9)*x^3 + (20*c^5*d^9
*e^2 - 39*a*c^4*d^7*e^4 + 9*a^2*c^3*d^5*e^6 + 3*a^3*c^2*d^3*e^8 - 9*a^4*c*d*e^10)*x^2 + (15*c^5*d^10*e - 11*a*
c^4*d^8*e^3 - 33*a^2*c^3*d^6*e^5 + 15*a^3*c^2*d^4*e^7 - 18*a^4*c*d^2*e^9)*x)*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 +
 a*e^2)*x))/(a*c^6*d^11*e^5 - 3*a^2*c^5*d^9*e^7 + 3*a^3*c^4*d^7*e^9 - a^4*c^3*d^5*e^11 + (c^7*d^10*e^6 - 3*a*c
^6*d^8*e^8 + 3*a^2*c^5*d^6*e^10 - a^3*c^4*d^4*e^12)*x^3 + (2*c^7*d^11*e^5 - 5*a*c^6*d^9*e^7 + 3*a^2*c^5*d^7*e^
9 + a^3*c^4*d^5*e^11 - a^4*c^3*d^3*e^13)*x^2 + (c^7*d^12*e^4 - a*c^6*d^10*e^6 - 3*a^2*c^5*d^8*e^8 + 5*a^3*c^4*
d^6*e^10 - 2*a^4*c^3*d^4*e^12)*x)]

Sympy [F]

\[ \int \frac {x^4}{(d+e x) \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}} \, dx=\int \frac {x^{4}}{\left (\left (d + e x\right ) \left (a e + c d x\right )\right )^{\frac {3}{2}} \left (d + e x\right )}\, dx \]

[In]

integrate(x**4/(e*x+d)/(a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(3/2),x)

[Out]

Integral(x**4/(((d + e*x)*(a*e + c*d*x))**(3/2)*(d + e*x)), x)

Maxima [F(-2)]

Exception generated. \[ \int \frac {x^4}{(d+e x) \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}} \, dx=\text {Exception raised: ValueError} \]

[In]

integrate(x^4/(e*x+d)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(e>0)', see `assume?` for more
details)Is e

Giac [F]

\[ \int \frac {x^4}{(d+e x) \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}} \, dx=\int { \frac {x^{4}}{{\left (c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x\right )}^{\frac {3}{2}} {\left (e x + d\right )}} \,d x } \]

[In]

integrate(x^4/(e*x+d)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2),x, algorithm="giac")

[Out]

integrate(x^4/((c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)^(3/2)*(e*x + d)), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {x^4}{(d+e x) \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}} \, dx=\int \frac {x^4}{\left (d+e\,x\right )\,{\left (c\,d\,e\,x^2+\left (c\,d^2+a\,e^2\right )\,x+a\,d\,e\right )}^{3/2}} \,d x \]

[In]

int(x^4/((d + e*x)*(x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(3/2)),x)

[Out]

int(x^4/((d + e*x)*(x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(3/2)), x)